Summary of Qualifications

Stacy Gaikovaia

Languages: C/C++, Python, Bash, Verilog, SystemVerilog, Java, Coq Tools: git, perforce, vim, gdb, valgrind, Unix/Linux, gcc, make Projects: Yocto, Bitbake, OpenEmbedded, OpenCL, FFmpeg, Intel Intrinsics (AVX, AVX2)

Prior Experience

Wind River, Linux Developer - Python, C

Maintained an open source Linux distribution.

- Contributed to web browser board support package, delivering kiosk-mode chrome to customer on tight deadline
- Fixed concurrency bugs in Valgrind in embedded Linux environment using gdb
- Enhanced test coverage by resolving bugs in build infrastructure

Apple Inc, ASIC Design Engineer – Verilog, SystemVerilog

Worked on the hardware microarchitecture of the pixel pipeline for various display panels.

- Re-architected interconnect fabric for tone mapping component, fixing a critical timing bug
- Worked with a senior engineer to verify feature set of tone mapping component, allowing project to move onto the next phase of development
- Created re-usable hardware components that will be available for future designs

IDT/Renesas, Firmware Developer - C

Developed firmware for R11F, a high density video transcoder on FPGA availble on AWS.

- Wrote custom bitstream filter converting CABAC-formatted H264 files to the CAVLC format for the FFmpeg project, which sped up decode time by ~12%
- Bitstream filter involved multiple concurrent processes and communicating across CPU/FPGA memory interface

IDT, Firmware Developer - C

Developed firmware for R12C, a CPU-based video transcoder.

- Re-wrote firmware throttle controller to balance CPU usage between different transcoder components, providing finer control over transport stream multiplexing
- Wrote FFmpeg regression test suite to find system performance discrepencies

Centre for Theoretical Neuroscience, Research Assistant - Python

Wrote high-level neural simulations using the nengo Python software package.

- Modeled the process of object categorization and adaptation to visual distortion in monkey brains
- Wrote optimization scripts to find recursive network connection strengths that mapped accurately to known biological phenomena, such as response latency and neuron spiking patterns

Education

B.A.Sc. University of Waterloo

Candidate for Bachelor of Applied Science, Honours Computer Engineering Combinatorics and Optimization Minor September 2020 – December 2020

September 2019 – December 2019

May 2018 – August 2018

January 2019 – April 2019

April 2016 – August 2016

September 2015 – April 2021